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Four-probe method:
Two common techniques used in four-probe method 
are (i) Four-point collinear probe method and (ii) van 
der Pauw method.

Four-point collinear probe method:

• This is the most common way of measuring the

resistivity of a material, which involves four equally

spaced probes as shown in Figure in contact with a

materials of unknown resistance.

• No metal contacts are made. Contacts are made by

pressing.



• The four probes are four platinum or gold needle contacts, 
which is pressed on surface of the sample.

• This method can be used either in bulk or thin film specimen.

• Sample should be regular  (shape) in nature.

• Current is applied in the outermost probes and voltage is 
measured between inner two probes using voltmeter.



• Consider a bulk material
as shown in Figure,
where the thickness (t)
of the materials is much
higher than the space
between the probes (s),
then the differential
resistance due to
spherical protrusion of
current emanating from
the outer probe tips is

For Bulk:



Carrying out the integration between the inner probe tips,



For Thin sheet:

For a very thin layer as shown in Figure , where the thickness of the 
sheet t << the space between the probes, s, we can get current rings 
instead of spheres. Therefore, the expression for the area is A = 
2πx.t. Therefore, the derivation for resistance turns out to be:



Due to the superposition of current at outer tips, R = V / (2 I ).
Therefore , the sheet resistivity for a thin sheet is

This expression is independent of probe spacing (s). It only 
depends on thickness (t) of the sample. Here, (π/ln 2) is 
known as the correction factor.



Van der Pauw method:
• This method involves applying a current and measuring voltage

using four small contact on the circumference of a flat, arbitrarily
shaped sample of uniform thickness.

• Make Ohmic contacts: contacts by thermal evaporation of
conducting material like, gold, silver or aluminium.

• Four very small contacts should be made on the periphery of the
sample surface.



• The resistivity can be obtained from a total of eight
measurements that are made around the periphery
of the sample with the configurations as shown in
Figure .



Once all the voltages are taken, two values of 
resistivity ρA and ρB can be derived as follows:

where ρA and ρB are volume resistivity in Ohm-cm, ts is the sample
thickness in cm, V1 to V8represent the voltages measured by the
voltmeter under eight geometrics respectively, I is the current through
the sample in amperes.
• For a perfect symmetry system, fA = fB ≈ 1 and therefore, the

average resistivity turns out to be



Hall Mobility Measurements
The basic physical principle underlying the Hall effect is the Lorentz force.
When an electron moves along a direction perpendicular to an applied
magnetic field, it experiences a force acting normal to both directions and
moves in response to this force and the force effected by the internal
electric field. The Lorentz force is given by

F= q[E+(v xB)]

The Hall effect is
illustrated in figure 1 for
a bar-shaped sample in
which charge is carried
by electrons.



• A constant current I flows through the bar and the entire bar is subject
to a uniform magentic field B, which is directed into the screen,
perpendicular to the current flow.

• Since the electrons are travelling through a magnetic field, they are
subject to an upwards Lorentz force and so drift to the top of the bar
whilst maintaining their horizontal motion.

• This leads to a build up of negative charge on one side of the bar and
positive charge on the other due to the lack of electrons. This leads to
a potential difference between the two sides of the sample, that can
be measured as the Hall voltage VH.

• This transverse voltage is the Hall voltage VH and its magnitude is equal
to IB/qnd, where I is the current, B is the magnetic field, d is the
sample thickness, and q(1.602 x 10-19 C) is the elementary charge. In
some cases, it is convenient to use layer or sheet density (ns = nd)
instead of bulk density. One then obtains the equation



• By measuring the Hall voltage VH and from the known values
of I, B, and q, one can determine the sheet density ns of charge
carriers in semiconductors. If the measurement apparatus is set
up as shown, the Hall voltage is negative for n-type
semiconductors and positive for p-type semiconductors.

• The sheet resistance RS of the semiconductor can be
conveniently determined by use of the Van der Pauw resistivity
measurement technique. Since sheet resistance involves both
sheet density and mobility, one can determine the Hall mobility
from the equation

If the conducting layer thickness d is known, one can determine the 
bulk resistivity (r = RSd) and the bulk density (n = nS/d).



Hot point probe measurement
• A conventional Hot-Probe experiment enables a 

simple and efficient way to distinguish between n-
type and p-type semiconductors using a hot probe 
and a standard voltmeter.

• A hot region of a wafer has a larger number of 
carriers that will diffuse to cooler regions.



• Thermally excited majority free charged carriers are
translated within the semiconductor from the hot probe to
the cold probe.

• The mechanism for this motion within the semiconductor is
of a diffusion type since the material is uniformly doped due
to the constant heating in the hot probe contact.

• These translated majority carriers define the electrical
potential sign of the measured current in the multimeter.

• If the carriers are positive (holes), the current will flow in
the same direction that the carriers diffuse. Therefore
voltmeter will show negative reading.

• If the carriers are negative, the current flow will be in the
opposite direction. Therefore, Voltmeter will show positive.

• With the majority carriers diffusing away from the hot
probe, the voltage meter will show a positive or negative
reading depending on the type of majority carriers in the
semiconductor.



Capacitance-Voltage measurements

• Capacitance–voltage measurements is a technique for
characterizing semiconductor materials and devices.

• The applied voltage is varied, and the capacitance is
measured and plotted as a function of voltage.

• The technique uses a metal–semiconductor junction
(Schottky barrier) or a p–n junction to create a depletion
region, a region which is empty of
conducting electrons and holes, but may contain ionized
donors and electrically active defects or traps.

• The depletion region with its ionized charges inside
behaves like a capacitor.



• C–V measurements yield accurate information about

doping concentrations of majority carriers as a function of

distance (depth) from the junction. By varying the voltage

applied to the junction it is possible to vary the depletion

width.

• The dependence of the depletion width upon the applied

voltage provides information on the semiconductor's

internal characteristics, such as its doping profile

and electrically active defect densities.

• Measurements may be done at DC, or using both DC and a

small-signal AC signal.



Parameter extraction from I-V Characteristics

• The variation of current with voltage represents the I-V

characteristics.

• The I-V curves can be recorded on electrometer and the

linear fit according to ohm’s law (I=V/R) and slope (1/R) of

the curves can be used to evaluate the dc electrical

conductivity of the samples using the following relation:

Where, R denotes resistance, L and A are thickness and cross

sectional area of the sample respectively.

dc

L

RA
 



The plot of 1000/T versus ln σdc is drawn and the plots are 
fitted to straight line and slope of the straight line gives 
activation energy of conduction (E) while the intercept gives 
pre-exponential factor (σo) according to the following relation:

expdc o
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• Pre-exponential factor (σo) is helpful in identifying the

conduction mechanism taking place in a sample. According

to Mott , σo value is two to three orders smaller for

conduction in localised states than conduction in extended

states.

Hence, the parameters that can be extracted from I-V 

measurements are:

1. Resistance of material (R)

2. Conductivity  (σ)

3. Activation energy of conduction (∆E)

4. Pre-exponential factor (σo)



Deep‐level transient spectroscopy 
(DLTS)

• Deep-level transient spectroscopy (DLTS) is an experimental

tool for studying electrically active defects (known as charge

carrier traps) in semiconductors.

• DLTS establishes fundamental defect parameters and

measures their concentration in the material.

• DLTS investigates defects present in a depletion region of a

simple electronic device. The most commonly used

are Schottky diodes or p-n junctions.



• In the measurement process, the equilibrium state of diode

is disturbed by a voltage pulse. This voltage pulse reduces

the electric field in the depletion region and allows

free carriers from the semiconductor bulk to penetrate this

region and recharge the defects causing their non-

equilibrium charge state.

• After the pulse, when the voltage returns to its steady-state

value, the defects start to emit trapped carriers due to the

thermal emission process.

• The technique observes the device depletion

region capacitance where the defect charge state recovery

causes the capacitance transient.



• The voltage pulse followed by the defect charge state

recovery are cycled allowing an application of

different signal processing methods for defect recharging

process analysis.

• The DLTS technique has a higher sensitivity than almost

any other semiconductor diagnostic technique. For

example, in silicon it can detect impurities and defects at

a concentration of one part in 1012 of the material host

atoms.



Band gap by UV-Vis spectroscopy, 
absorption/transmission
• Ultraviolet–visible spectroscopy or ultraviolet–visible

spectrophotometry (UV–Vis or UV/Vis) refers to absorption

spectroscopy or reflectance spectroscopy in the ultraviolet-visible

spectral region. This means it uses light in the visible and adjacent

ranges.

• A spectrophotometer is used to record the absorption and

transmission spectra of samples in the wavelength range 400-2500

nm at room temperature. The ultraviolet (UV) region scanned is

normally from 200 to 400 nm, and the visible portion is from 400

to 800 nm. Above this is infrared region.



Absorption Spectra: The plot of Absorbance vs wavelength is
called Absorption spectra. Absorbance is measure of the
capacity of a substance to absorb light of a specified
wavelength.

The absorption spectra were utilized to get absorption 
coefficient (α) given by the following relation:

2.302
Absorbance

thickness


 
  

 



Transmission Spectra: Transmittance of the surface of a material
is its effectiveness in transmitting radiant energy. It is the
fraction of incident electromagnetic power that is transmitted
through a sample.

The Maxima and Minima are obtained corresponding to
constructive and destructive interference of light rays
interacting with the sample .



The value of band gap was obtained using Tauc relation, which

is The relation between the absorption coefficients (α) and

the incident photon energy (hn) given by

Band gap determination

(hn) = A (hn-Eg)
n

where A is a constant and Eg is the band gap of the material
and exponent n depends on the type of transition.
n= ½ for allowed direct transition
n = 2 for allowed indirect transition
n= 3/2 for forbidden transition



Band gap is obtained by extrapolation of the straight line to 

(hn)1/2 = 0 axis in the  plot of (αhν)1/2 versus hv.



Low-dimensional systems

Low-dimensional structures are usually classified according
to the number of reduced dimensions they have. More
precisely, the dimensionality refers to the number of
degrees of freedom in the particle momentum. Accordingly,
depending on the dimensionality, the following classification
is made:

• Three-dimensional (3D) structure or bulk structure: No

quantization of the particle motion occurs, i.e., the particle is

free.

• Two-dimensional (2D) structure or quantum well: Quantization

of the particle motion occurs in one direction, while the particle

is free to move in the other two directions.



• One-dimensional (1D) structure or quantum wire: Quantization

occurs in two directions, leading to free movement along only

one direction.

• Zero-dimensional (0D) structure or quantum dot (sometimes

called “quantum box”): Quantization occurs in all three

directions.





Density of States in 3 D, 2D, 1D and 0D

• The density of states function describes the number of states

that are available in a system and is essential for determining

the carrier concentrations and energy distributions of carriers

within a semiconductor.

• In semiconductors, the free motion of carriers is limited to

two, one, and zero spatial dimensions. When applying

semiconductor statistics to systems of these dimensions, the

density of states in quantum wells (2D), quantum wires (1D),

and quantum dots (0D) must be known.



Derivation of Density of States (2D)

We can model a semiconductor as an infinite quantum well (2D) with sides of  

length L. Electrons of mass m* are confined in the well.

If we set the PE in the well to zero, solving the Schrödinger equation yields

(Eq. 1)
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Derivation of Density of States (2D)

Using separation of variables, the wave function becomes

(Eq. 2)

where k= constant

 (x, y)  x(x) y( y)

2k  0
1 2


1 2


 x2  y2

x y

Substituting Eq. 2 into Eq. 1 and dividing through by  xy

yields

This makes the equation valid for all possible x and y terms only if terms  

including  x(x) and  y(y) are individually equal to a constant.



Derivation of Density of States (2D)

Thus,

where

Since the wave function equals zero at the infinite barriers of the well, only the  

sine function is valid. Thus, only the following values are possible for the  

wave number (k):
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Derivation of Density of States (2D)

Recalling from the density of states 3D derivation…

k-space volume of single state cube in k-space:

k-space volume of sphere in k-space:

V is the volume of the crystal.

Vsingle-state is the smallest unit in k-space  

and is required to hold a single electron.

3
Vsphere

4k 3
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Derivation of Density of States (2D)

Recalling from the density of states 3D derivation…

k-space volume of single state cube in k-space:
   

        
   


3V La b c

V
singlestate

 3   3      

k-space volume of sphere in k-space:
3

4k3
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Number of filled states in a sphere:
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
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4k L

A factor of two is added  
to account for the two  
possible electron spins

of each solution.

Correction factor for

redundancy in counting  
identical states +/- nx, +/-
ny, +/- nz



Derivation of Density of States (2D)

For calculating the density of states for a 2D structure (i.e. quantum well), we  

can use a similar approach, the previous equations change to the following:

k-space volume of sphere in k-space:

     
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Number of filled states in a sphere:



Derivation of Density of States (2D)

continued……

h2

2mE
k ,

k 2L2

2
N  Substituting yields

2

2

h mL2E

h2


 L2



2mE 
2







N 

The density per unit energy is then obtained using the chain rule:

dN


dN dk


L2m  

dE dk dE h2



Derivation of Density of States (2D)

The density of states per unit volume, per unit energy is found by dividing  

by V (volume of the crystal).

g(E)2D becomes:

h2 m

h2L2

L2m

g(E) 2D

As stated initially for the electron mass, m m*.  

Thus,

m*

g(E)2 D h2

It is significant that the 2D  
density of states does not depend  
on energy. Immediately, as the  
top of the energy-gap is reached,  
there is a significant number of  
available states.



Derivation of Density of States (1D)
For calculating the density of states for a 1D structure (i.e. quantum wire), we  

can use a similar approach. The previous equations change to the following:

k-space volume of sphere in k-space:

     
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Number of filled states in a sphere:



Derivation of Density of States (1D)

Continued…..

Rearranging……

h2

2mE
k 


N 

kL
,

The density per unit energy is then obtained by using the chain rule:

Substituting yields
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Derivation of Density of States (1D)

The density of states per unit volume, per unit energy is found by dividing  

by V (volume of the crystal).

g(E)1D becomes:

Simplifying yields…

h
L


h 2mE

g(E)1D 
2mE1/ 2 m m
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Derivation of Density of States (1D)

As stated initially for the electron mass, m m*. Also, because only kinetic

energy is considered E Ec.

Thus,
1D

g(E) 
1


m*

h 2(E Ec )



Derivation of Density of States (0D)

When considering the density of states for a 0D structure (i.e. quantum dot),  

no free motion is possible. Because there is no k-space to be filled with  

electrons and all available states exist only at discrete energies, we describe the  

density of states for 0D with the delta function.

Thus,

g(E)0 D  2 (E  Ec)



Additional Comments
The density of states has a functional dependence on energy.



Additional Comments



Practical Applications

Quantum Wells (2D) - a potential well that confines particles  

in one dimension, forcing them to occupy a planar region

Quantum Wire (1D) - an electrically conducting wire, in  

which quantum transport effects are important

Quantum Dots (0D) - a semiconductor crystal that confines  

electrons, holes, or electron-pairs to zero dimensions.



Quantum Dots

• Small devices that contain  
a tiny droplet of free  
electrons.

• Dimensions between
nanometers to a few
microns.

• Contains single electron to  
a collection of several  
thousands

• Size, shape, and number of  
electrons can be precisely  
controlled



Quantum Dots

• Exciton: bound electron-
hole pair (EHP)

• Attractive potential  
between electron and  
hole

• Excitons generated inside  
the dot

• Excitons confined to the dot

– Degree of confinement  
determined by dot size

– Discrete energies



Fabrication

Methods
• Goal: to engineer potential energy  

barriers to confine electrons in 3  

dimensions

• 3 primary methods

– Lithography

– Colloidal chemistry

– Epitaxy



Design and fabrication
Quantum well:

Design: Quantum wells are real-world implementation of the
“particle in the box” problem; they act as potential wells for
charge carriers and are typically experimentally realized by
epitaxial growth of a sequence of ultrathin layers consisting of
semiconducting materials of varying composition.

Fabrication: Two dissimilar semiconductors with different band
gaps can be joined to form a heterojunction. The discontinuity
in either the conduction or the valence band can be used to
form a potential well. If a thin layer of a narrower-band gap
material 'A' say, is sandwiched between two layers of a wider-
band gap material 'B', then they form a double heterojunction.
If layer 'A' is sufficiently thin for quantum properties to be
exhibited, then such a band alignment is called a single
quantum well.





Quantum wire

• A standard quantum well layer can be patterned with
photolithography or perhaps electron-beam lithography,
and etched to leave a free standing strip of quantum well
material.

• The following Fig. shows an expanded view of a single
quantum wire, where clearly the electron (or hole) is free
to move in only one direction, in this case along the y-axis.



Quantum dot:

Quantum dots can again be formed by further lithography 

and etching, e.g. if a quantum well sample is etched to leave 

pillars rather than wires, then a charge carrier can become 

confined in all three dimensions, as shown in Fig.





Characterization techniques

• When an X-ray beam hits an atom, the electrons around the
atom start to oscillate with the same frequency as the incoming
beam. In almost all directions destructive interference is
observed, that is, the combining waves are out of phase and
there is no resultant energy leaving the solid sample.

• However, the atoms in a crystal are arranged in a regular
pattern, and in a very few directions constructive interference is
obtained. The waves will be in phase and there will be well
defined X-ray beams leaving the sample at various directions.

• Hence, a diffracted beam may be described as a beam
composed of a large number of scattered rays mutually
reinforcing one another.

X-ray diffraction



• Bragg obtained the geometrical relationship between
wavelength (λ), atomic spacing (d) and angle (θ) is given by
as:

2d Sinθ = n λ
• If the wavelength is known (depends on the type of X-ray

tube used) and the angle can be measured (with

diffractometer) then the interplanar distance can be

calculated from the Bragg’s equation.

• The finite size of the crystallites has a marked effect on the

X-ray diffraction line widths. With reduction in the particle

size, observed X-ray diffraction peaks broaden significantly.

This is due to the finite size of the nanoparticles.



The particle size of these nanoparticle using Debye Scherrer
formula. The Scherrer formula is given by:

D=  0.9  λ / β Cos θ

where D is the average particle size perpendicular to the
reflecting planes, λ is the X-ray wavelength, β is the full
width at half maximum (FWHM), and θ is the diffraction
angle.



Transmission Electron Microscopy (TEM) 

• Transmission Electron Microscopy (TEM) is a versatile
technique to study the particle size, shape and size
distribution of particles from solutions and dry origins.

• TEM is also useful in the identification of crystal structure
of crystalline particles by electron diffraction.

• In Transmission Electron Microscope, a beam of electrons
is transmitted through a specimen to form an image. The
specimen is most often an ultrathin section less than 100
nm thick or a suspension on a grid.

• An image is formed from the interaction of the electrons
with the sample as the beam is transmitted through the
specimen. The image is then magnified and focused onto
an imaging device, such as a fluorescent screen, a layer of
photographic film.





• The electron beam is confined by the two condenser lenses
which also control the brightness of the beam. This electron
beam passes the condenser aperture and “hits” the sample
surface.

• The electrons that are elastically scattered consist of the
transmitted beams, which pass through the objective lens.
The objective lens forms the image display and the following
apertures, the objective and selected area aperture are
used to choose of the elastically scattered electrons that will
form the image of the microscope.

• Finally, the beam goes to the magnifying system consisting
of three lenses, the first and second intermediate lenses
which control the magnification of the image and the third
one is projector lens. The formed image is shown either on a
fluorescent screen or in monitor or both and is printed on a
photographic film.



TEM Images



Scanning electron microscope (SEM)
• A scanning electron microscope (SEM) is a type of electron

microscope that produces images of a sample by scanning the
surface with a focused beam of electrons.

• The electrons interact with atoms in the sample, producing
various signals that contain information about the surface
topography and composition of the sample.

• The electron beam is scanned in a raster scan pattern, and the
position of the beam is combined with the detected signal to
produce an image.

• The most common SEM mode is the detection of secondary
electrons emitted by atoms excited by the electron beam. The
number of secondary electrons that can be detected depends,
among other things, on specimen topography.

• By scanning the sample and collecting the secondary electrons
that are emitted using a special detector, an image displaying the
topography of the surface is created.



Schematic of  SEM



Scanning process and image formation

• In a typical SEM, an electron beam is thermionically emitted from
an electron gun fitted with a tungsten filament cathode.

• The electron beam, which typically has an energy ranging from 0.2
keV to 40 keV, is focused by one or two condenser lenses to a spot
about 0.4 nm to 5 nm in diameter. The beam passes through pairs
of scanning coils or pairs of deflector plates in the electron
column, typically in the final lens, which deflect the beam in the x
and y axes so that it scans in a raster fashion over a rectangular
area of the sample surface.

• The primary electron beam interacts with the sample, the
electrons lose energy by repeated random scattering and
absorption within a teardrop-shaped volume of the specimen
known as the interaction volume, which extends from less than
100 nm to approximately 5 µm into the surface.



• The size of the interaction volume depends on the

electron's landing energy, the atomic number of the

specimen and the specimen's density.

• The energy exchange between the electron beam and the

sample results in the reflection of high-energy electrons by

elastic scattering, emission of secondary electrons by

inelastic scattering and the emission of electromagnetic

radiation, each of which can be detected by specialized

detectors.

• Magnification in an SEM can be controlled over a range of

about 6 orders of magnitude from about 10 to 500,000

times.



SEM Images



Heterojunctions and associated 
band diagram

Type I Heterojunctions



Type II Heterojunctions











Future

Research
• Probe fundamental physics

• Quantum computing schemes

• Biological applications

• Improved Treatments for Cancer

• Optical and optoelectronic devices, quantum  

computing, and information storage.

• Semiconductors with quantum dots as a material  

for cascade lasers.

• Semiconductors with quantum dots as a material  

for IR photodetectors

• Injection lasers with quantum dots

• Color coded dots for fast DNA testing

• 3-D imaging inside living organisms
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